博客
关于我
Li‘s 影像组学视频学习笔记(15)-ROC曲线及其绘制
阅读量:563 次
发布时间:2019-03-09

本文共 905 字,大约阅读时间需要 3 分钟。

本笔记来源于B站Up主: 有Li 的影像组学系列教学视频

本节(15)主要介绍:

  • ROC 曲线

ROC = receiver operating characteristic curve, 受试者工作特征曲线

横坐标:FPR = false positive rate, 假阳
纵坐标:TPR = true positive rate, 真阳
ROC曲线上的点,表示在不同阈值时对应的FPR和TPR
上面的阈值指预测阳性概率为多大及以上时,判定为阳性
关注四个点来理解ROC曲线:
(0,0) :FPR = 0,TPR = 0, 即全部预测N
(1,1) :FPR = 1,TPR = 1,即全部预测P
(1,0) :FPR = 1,TPR = 0,即全部预测错了
(1,1) :FPR =1,TPR = 1, 即全部预测对了

  • AUC = area under curve

代码(基于之前的数据结果):

from sklearn.metrics import roc_curve, roc_auc_scorey_probs = model_svm.predict_proba(X)#print(y_probs)#print(y_probs[:,1])fpr,tpr,thresholds = roc_curve(y,y_probs[:,1],pos_label = 1)plt.plot(fpr,tpr,marker = 'o')plt.xlabel('fpr')plt.ylabel('tpr')plt.show()auc_score = roc_auc_score(y,model_svm.predict(X))print(auc_score)
#select the best thresholdJ = tpr - fpridx = argmax(J)best_threshold = thresholds[idx]

作者:北欧森林

链接:https://www.jianshu.com/p/496bb5f371d3
来源:简书,已获授权转载

RadiomicsWorld.com “影像组学世界”论坛:

你可能感兴趣的文章
MySQL服务器安装(Linux)
查看>>
mysql服务器查询慢原因分析方法
查看>>
mysql服务无法启动的问题
查看>>
MySQL杂谈
查看>>
mysql权限
查看>>
mysql条件查询
查看>>
MySQL条件查询
查看>>
MySQL架构与SQL的执行流程_1
查看>>
MySQL架构与SQL的执行流程_2
查看>>
MySQL架构介绍
查看>>
MySQL架构优化
查看>>
mysql架构简介、及linux版的安装
查看>>
MySQL查看数据库相关信息
查看>>
MySQL查看表结构和表中数据
查看>>
MySQL查询优化:LIMIT 1避免全表扫描
查看>>
MySQL查询优化之索引
查看>>
mysql查询储存过程,函数,触发过程
查看>>
mysql查询总成绩的前3名学生信息
查看>>
mysql查询慢排查
查看>>
MySQL查询报错ERROR:No query specified
查看>>